

Silicon N-channel MOS field effect transistors, designed for enhancement-mode operation in low power switching applications. The 2N4351 is complementary with type 2N4352.

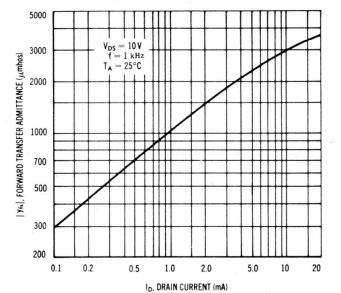
MAXIMUM RATINGS (TA = 25 °C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Source Voltage	v_{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Gate-Source Voltage	v _{GS}	± 30	Vdc
Drain Current	I _D	30	mAdc
Power Dissipation at T _A = 25 ^o C Derate above 25 ^o C	P _D	300 1.7	mW mW/ ^o C
Power Dissipation at T _C = 25 ^o C Derate about 25 ^o C	P _D	800 4.56	mW mW/°C
Operating Junction Temperature	$\mathtt{T}_{\mathtt{J}}$	175	°С
Storage Temperature Range	$T_{ m stg}$	-65 to +200	°C

HANDLING PRECAUTIONS:

MOS field-effect transistors have extremely high input resistance. They can be damaged by the accumulation of excess static charge. Avoid possible damage to the devices while handling, testing, or in actual operation, by following the procedures outlined below:

- 1. To avoid the build-up of static charge, the leads of the devices should remain shorted together with a metal ring except when being tested or used.
- 2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
- 3. Do not insert or remove devices from circuits with the power on because transient voltages may cause permanent damage to the devices.



ELECTRICAL CHARACTERISTICS ($T_A = 25\,^{\circ}\text{C}$ unless otherwise noted) Substrate connected to source.

Characteristic (Figure No.	Symbol	Min	Max	Unit
FF CHARACTERISTICS	8				
Drain-Source Breakdown Voltage ($I_D = 10 \mu A$, $V_{GS} = 0$)	-	V _{(BR)DSS}	25	_	Vdc
Gate Leakage Current (V _{GS} = ±15 Vdc, V _{DS} = 0)	-	IGSS	_	10	pAdc
Zero-Gate-Voltage Drain Current (VDS = 10 V, VGS = 0)	-	I _{DSS}	_	10	nAdc
N CHARACTERISTICS					
Gate-Source Threshold Voltage (V _{DS} = 10 V, I _D = 10 µA)	-	V _{GS(TH)}	1.0	5	Vdc
"ON" Drain Current (V _{GS} = 10 V, V _{DS} = 10 V)	3	I _{D(on)}	3	_	m Ad c
Drain-Source "ON" Voltage (I _D = 2 mA, V _{GS} = 10 V)	-	V _{DS(on)}	_	1.0	Vdc
MALL SIGNAL CHARACTERISTICS	4.				
Drain-Source Resistance (V _{GS} = 10 V, I _D = 0, f = 1 kHz)	4	rds(on)	_	300	ohms
Forward Transfer Admittance (VDS = 10 V, ID = 2 mA, f = 1 kHz)	1	y _{fs}	1000	_	μmho
Reverse Transfer Capacitance (V _{DS} = 0, V _{GS} = 0, f = 140 kHz)	2	Crss	_	1.3	pF
Input Capacitance $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 140 \text{ kHz})$	2	C _{iss}		5. 0	pF
Drain-Substrate Capacitance (V _D (SUB) = 10 V, f = 140 kHz)	-	C _{d(sub)}		5.0	pF
VITCHING CHARACTERISTICS					
Turn-On Delay $I_D = 2.0 \text{ mAdc}, V_{DS} = 10 \text{ Vdc}$	6,10	t _{d1}	_	45	ns
Rise Time V _{GS} = 10 Vdc	7,10	t _r	_	65	ns
Turn-Off Delay (See Figure 10; Times	8, 10	t _{d2}	_	60	ns
Fall Time Circuit Determined)	9,10	t _f	_	100	ns

www.datasheetcatalog.com

FIGURE 1 — FORWARD TRANSFER ADMITTANCE

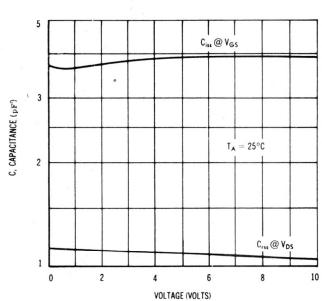


FIGURE 2 — CAPACITANCE

www.datasheetcatalog.com

FIGURE 3 — TRANSFER CHARACTERISTICS

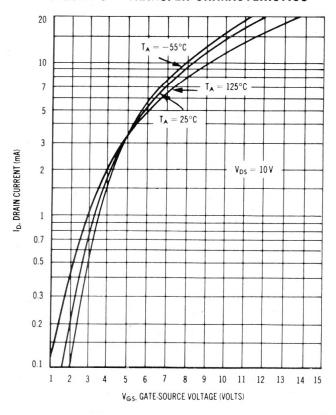


FIGURE 4 — DRAIN SOURCE "ON" RESISTANCE

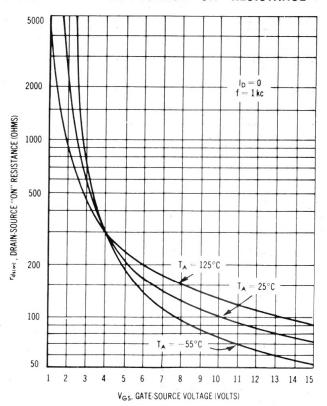
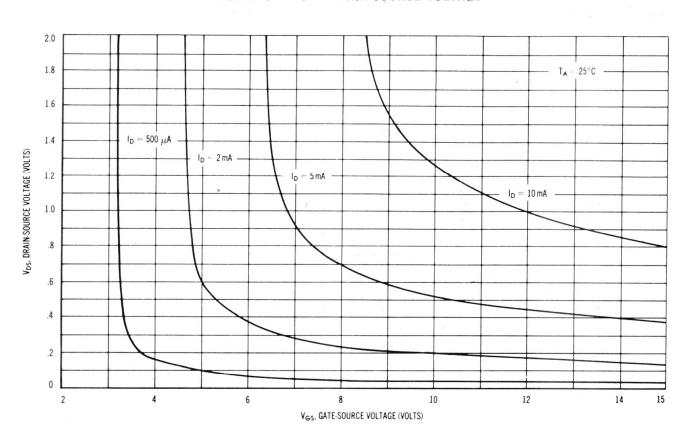
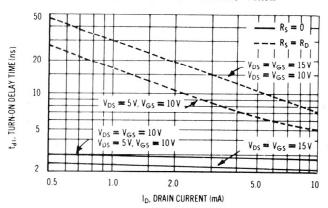



FIGURE 5 — "ON" DRAIN-SOURCE VOLTAGE



SWITCHING CHARACTERISTICS

 $(T_A = 25^{\circ}C)$

FIGURE 6 - TURN-ON DELAY TIME

FIGURE 7 — RISE TIME

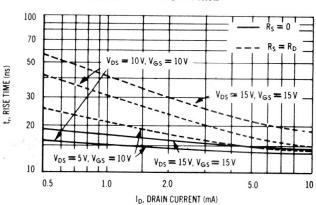


FIGURE 8 — TURN-OFF DELAY TIME

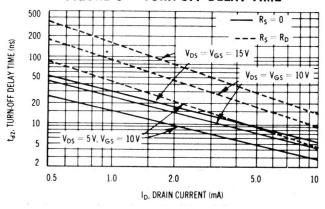
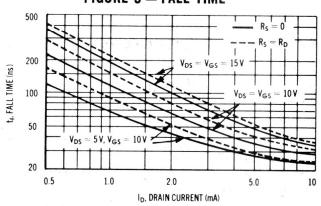
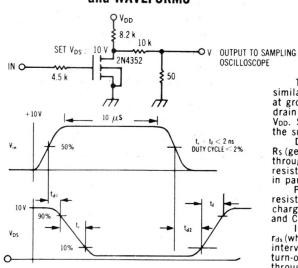




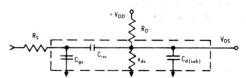
FIGURE 9 — FALL TIME

FIGURE 10 — SWITCHING CIRCUIT and WAVEFORMS

The switching characteristics shown above were measured in a test circuit similar to Figure 10. At the beginning of the switching interval, the gate voltage is at ground and the gate-source capacitance (C₉₅ = C₁₅₅ -C_{r55}) has no charge. The drain voltage is at V_{DD}, and thus the feedback capacitance (C_{r55}) is charged to V_{DD}. Similarly, the drain-substrate capacitance (C_{d[sub]}) is charged to V_{DD} since the substrate and source are connected to ground.

During the turn-on interval, C₉₅ is charged to V_{GS} (the input voltage) through Rs (generator impedance) (Figure 11). C_{r55} must be discharged to V_{GS} - V_{D[on]} through Rs and the parallel combination of the load resistor(R_D) and the channel resistance (r_{d5}). In addition, C_{d[sub]} is discharged to a low value (V_{D[on]}) through R_D in parallel with r_{d5}. During turn-off this charge flow is reversed.

Predicting turn-on time proves to be somewhat difficult since the channel resistance (r_{d5}) is a function of the gate-source voltage (V_{GS}). As C_{g5} becomes charged V_{GS} is approaching V_{In} and r_{d5} decreases (see Figure 4) and since C_{r55} and C_{d(sub)} are charged through r_{d5}, turn-on time is quite non-linear.


If the charging time of C_{g5} is short compared to that of C_{r55} and C_{d(sub)}, then r_{d5} (which is in parallel with R_D) will be low compared to R_D during the switching interval and will largely determine the turn-on time. On the other hand, during turn-off r_{d5} will be almost an open circuit requiring C_{r55} and C_{d(sub)} to be charged through R_D and resulting in a turn-off time that is long compared to the turn-on time. This is especially noticeable for the curves where R_S = 0 and C_{g5} is charged through the pulse generator impedance only.

The switching curves shown with R_{C7} = R_{D7} simulate the switching heavier.

through the pulse generator impedance only.

The switching curves shown with $R_S = R_D$ simulate the switching behavior of cascaded stages where the driving source impedance is normally the same as the load impedance. The set of curves with $R_S = 0$ simulates a low source impedance drive such as might occur in complementary logic circuits.

FIGURE 11 — SWITCHING CIRCUIT with MOSFET EQUIVALENT MODEL

